Quantcast
Channel: Field of Science Combined Feed
Viewing all articles
Browse latest Browse all 3941

Does modern day college and graduate education in chemistry sacrifice rigor for flexibility?

$
0
0
This is what I love about blogging; it's the classic "one thing leads to another" device. The previous discussion on the paucity of thermodynamics in college coursework led to a more general and important exchange in the comments section that basically asked: Are we sacrificing rigor for flexibility by giving students too much freedom to pick and choose their courses?

The following sentiments (or variations thereof) were expressed:

- There should be a core curriculum for chemistry students that exposes them to mandatory courses in general, organic and physical chemistry at the very least. These requirements seems to be more widespread among physics departments. To my knowledge, Caltech is one of the few schools with a general core curriculum for all science majors. How many other schools have this?

- Part of the lack of exposure to important topics in grad school results from emphasizing research at the cost of coursework. And this is related to a more widespread sentiment of woe: it's become all too easy to get a PhD, partly because of the curse of academia that encourages one to become a glorified technician at the cost of instilling creative scientific thought. The belief is that many professors (and there's many exceptions) would rather produce well-trained manual laborers who contribute to the Grant and Paper Production Factory than independent scientific thinkers who can assimilate ideas from diverse scientific fields. You shouldn't really get a Ph.D. just for putting in 80-hour weeks.

We need to hold students to higher standards, but I think this is not going to happen until the publish-or-perish culture is fundamentally transformed and the movers and shakers of academic research take a hard look at what they are doing to their graduate students.

- Many textbooks are mired in the age-old, classical presentation of thermodynamics that emphasizes Carnot cycles and Maxwell relations much more than any semi-quantative feel for the operation of thermodynamic in practical chemical and biological systems. We are just not doing a good job communicating the real-world importance of topics like thermodynamics; add to this students who are not going to study something if it's not required and we are in a real bind.

- Physical organic chemistry - the one discipline that can naturally build bridges between physical and organic chemistry - is disappearing from the curriculum. Those who intellectually matured in its heyday were naturally exposed to thermodynamics and kinetics. Graduate students in organic chemistry shouldn't be able to get away with just synthesis and spectroscopy courses.

- Matt who, unlike most of us armchair philosophers, is a live professor at an actual research institution, makes the point that we should do an outstanding job of emphasizing thermodynamics in the freshman general chemistry class. We should do such a good job that students should always be able to connect those concepts to anything else that they study later. As Matt recommends, we could include the more qualitative important real-life applications of thermodynamics (and not just to antiquated heat engines) like those in drug discovery in this gen chem class.

All great points in my opinion. I have strong feelings about all this myself, but I have not done any detailed study of college curricula so my opinions are mostly anecdotal. Feel free to chime in with actual data or more opinions in the comments section.

Viewing all articles
Browse latest Browse all 3941

Trending Articles